

Mitigating Against Attacks on BB84

Quantum Key Distribution

Charles Buckley

ORCID: https://orcid.org/0000-0003-1647-1248

Submitted: April 2021

https://orcid.org/0000-0003-1647-1248

ii

Abstract

Quantum key distribution has been one of the promising technologies since

quantum computing began. It has the potential to replace the classical secure key

generation method that can be used to secure the communication across the network.

The protocol has been proven to be secure however, the implementation needs to be

regularly checked to ensure there are no ways to get the secure key from the side

channel. This research aims to get real-world data by experimentally testing the attacks

with and without a mitigation plan. Then each attack will be categorized according to

few criteria. This can help to standardize attacks and help ETSI with their

standardization work. The categorization also shows attack pattern that can occur in the

future. This research has identified that real-world data may not be like the prediction of

their respective equation which is a topic of further research. This research concludes

that by using a mitigation plan, most of the automated attacks can be mitigated.

However, without a mitigation plan, devices will be highly vulnerable to automated

attacks even with the quantum key distribution.

iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to Dr Domenico

Vicinanza at Anglia Ruskin University for introducing me to Piotr Rydlichowski.

Without this opportunity, I would never have been able to learn and push myself as

much. I thank your patience for I did not update you until five days before the deadline.

I especially thank Piotr Rydlichowski for answering many questions about the

project as well as many questions that were not directly related to it. I also thank your

patience for I requested help a week before the deadline without any update before it

and you still helped me.

I must thank all my professors at Anglia Ruskin University for supporting me and

teaching me many things that I did not know.

Lastly, I thank my family for supporting me throughout this entire journey.

iv

Table of Contents

Abstract ... ii

Acknowledgements ..iii

Table of Contents ... iv

List of Figures .. vi

List of Tables ...viii

1 Introduction ... 1

1.1 Background .. 1

1.2 Problem Background .. 1

1.3 Aim of the Study .. 2

1.4 Scope of this Research ... 2

1.5 Report Structure ... 3

2 Literature Review .. 4

2.1 Theory of Quantum Computing ... 4

2.1.1 History of Quantum Computing ... 4

2.1.2 Qubit ... 5

2.1.3 Single Qubit Quantum Gates .. 7

2.1.4 Controlled Gates ... 10

2.1.5 Measurement ... 11

2.1.6 Entanglement .. 12

2.1.7 Quantum Networking ... 13

2.2 Attacks on BB84 QKD .. 17

2.2.1 Intercept and Resend ... 17

2.2.2 Man in the Middle Attack ... 18

2.2.3 Photon Number Splitting Attack .. 18

2.2.4 Denial of Service Attack ... 19

2.2.5 Trojan Horse Attack.. 19

2.2.6 Random Number Generator Attack .. 19

2.2.7 Physical Attack ... 20

3 Methodology.. 21

3.1 Discussion of Methodology ... 21

v

3.2 Data collection strategy .. 22

3.2.1 Proposed Design ... 22

3.2.2 Measurement ... 28

3.3 Analysis of Collected Data... 29

3.3.1 Confirmation with Equation ... 29

3.3.2 Proposed Categorization Method.. 29

3.4 Tools Used ... 32

3.4.1 Python ... 32

3.4.2 Qiskit ... 32

3.4.3 IBM Quantum Lab .. 33

3.4.4 Miscellaneous ... 33

3.5 Evaluation of Methodology.. 34

4 Implementation and Results .. 35

4.1 Testing .. 35

4.1.1 Testing without Interception ... 36

4.1.2 Testing with Interception .. 38

4.2 Results .. 40

4.2.1 Result of the Experiment .. 40

4.2.2 Result of the Categorization ... 44

5 Discussion.. 53

5.1 Interpretation of Results ... 53

5.1.1 Interpreting Experiment .. 53

5.1.2 Interpreting Easiest to Hardest Attacks .. 54

5.1.3 Interpreting Highest to Lowest Success Rate without Mitigation 54

5.1.4 Interpreting Highest to Lowest Success Rate with Mitigation 55

5.2 Evaluation of Approach ... 56

5.3 Implication of this Research .. 56

6 Conclusion ... 58

References ... IX

Appendix I .. XI

vi

List of Figures

Figure 2.1 Quantum state represented on Bloch sphere
4
 ... 7

Figure 2.2 Pauli-X gate represented in a circuit
3
 ... 8

Figure 2.3 Pauli-Y gate represented in a circuit
3
 ... 8

Figure 2.4 Pauli-Z gate represented in a circuit
3
 .. 9

Figure 2.5 Hadamard gate represented in a circuit
3
 ... 9

Figure 2.6 CX gate represented in a circuit
3
 .. 11

Figure 2.7 Measurement represented in a circuit
3
 .. 11

Figure 2.8 Circuit to create Bell state
5
 ... 12

Figure 2.9 Circuit representation of superdense coding
6
 ... 15

Figure 2.10 Circuit representation of quantum teleportation
8
 17

Figure 3.1 Showing the waterfall model of this research methodology..................... 22

Figure 3.2 Circuit representation of simulation of BB84 protocol without

interception
10

 24

Figure 3.3 Circuit representation of simulation of BB84 protocol with interception
10

 24

Figure 3.4 Waterfall model for creating code. ... 25

Figure 3.5 Class diagram for simulation both with and without interception 26

Figure 3.6 Activity diagram for simulation without interception 27

Figure 3.7 Example graph for organising attacks from highest to lowest success rate.

 30

Figure 3.8 Example graph for organising attacks from easiest to hardest attacks with

success rate. 30

Figure 4.1 States of the qubit cannot be shown because of error. It is possible to fix

the error however, it is outside the scope of this research. ... 37

Figure 4.2 Showing the internal measurements made for sending a message. 37

Figure 4.3 Showing the internal measurements made for measuring message. 37

Figure 4.4 Showing the internal measurements made for checking good bits. 37

Figure 4.5 Showing the internal measurements made for selecting sample bits........ 37

Figure 4.6 Showing the internal measurements made for Eve. 39

Figure 4.7 Showing the internal measurements made for Bob during the intercept

attack. 39

vii

Figure 4.8 Showing the internal measurements made for selecting sample bits with

an interception... 39

Figure 4.9 Showing that without an interception, there is no interception. 40

Figure 4.10 Probability of detecting Eve for one qubit. ... 41

Figure 4.11 Probability of detecting Eve for two qubits. ... 42

Figure 4.12 Probability of detecting Eve for three qubits. ... 42

Figure 4.13 Probability of detecting Eve for four qubits. .. 43

Figure 4.14 Probability of detecting Eve for five qubits. ... 43

Figure 4.15 Attacks ranked from highest to lowest success rate without mitigation

plan. 48

Figure 4.16 Attacks ranked from highest to lowest success rate with a mitigation plan.

 50

Figure 4.17 Attacks ranked from easiest to hardest with success rate without

mitigation plan. ... 51

Figure 4.18 Attacks ranked from easiest to hardest with success rate with a mitigation

plan. 52

viii

List of Tables

Table 2.1 Shows what basis states will map to by controlled-U gate
3
 10

Table 2.2 Shows which quantum gate to use based on classical bits. 16

Table 3.1 Example table for organising the attacks from easiest to hardest. 29

Table 4.1 Testing table for simulation of attack without an interception. 36

Table 4.2 Testing table for simulation of attack with an interception. 38

Table 4.3 Attacks ranked from easiest to hardest. .. 44

1

1 Introduction

This section focuses on the background, problem statement, the aim of the study

and the report structure.

1.1 Background

Quantum computing has the potential to simulate the movement of atoms

(O'Malley, et al., 2016), create new medicine (Hernandez, et al., 2019), discover

vaccines, and solve certain problems that classical computers cannot (Anon., 1992).

One of the promising technologies is the quantum network (Kimble, 2008). Quantum

network can allow things such as true peer to peer mesh network (K, 2018), quantum

blind computing (Chien, et al., 2015) and quantum clock synchronisation (Chuang,

2000) and (Krco & Paul, 2001). However, the best example would be the quantum key

distribution (QKD). QKD is designed to securely share random bits which form the

base of encryption keys (Bennet & Brassard, 1984). It also allows the detection of

eavesdropper by statistical analysis such as Bell’s inequality (Bell, 1964). QKD covers

only the creation and distribution of keys but not the encryption of data or transmission

of encrypted data.

1.2 Problem Background

QKD is theoretically secure (Shannon, 1949). However, in practice, there are

usually ways to break the security. This is not because the protocol is not secure

(Tomamichel & Leverrier, 2017) and (Portmann & Renner, 2014), but because the

2

implementation in the real world is different from the implementation in theory. For

example, in classical computing, AES and RSA have been broken by researchers even

if they still are theoretically secure. See (Ashokkumar, et al., 2016) for AES and

(Genkin, et al., 2013) for RSA.

Therefore, there is a need to constantly monitor and test QKD algorithms to make

sure there are no known attacks. If there are known attacks, then it needs to be mitigated

as much as possible.

1.3 Aim of the Study

The aim of this study is to design and simulate attacks against the QKD algorithm

and to create a mitigation plan against such attacks. This study will help the adoption of

QKD in the future by finding attacks and mitigation plan or by confirming that QKD

protocol has no attack vectors as of this research.

1.4 Scope of this Research

This research is limited to BB84 protocol and any attacks that may be able to get the

keys generated by BB84 protocol. And mitigation plans against such attacks.

Experiments will be restricted to attacks that can be simulated. Any attacks that involve

hardware or physical access is not possible due to the unavailability of a real quantum

computer.

3

1.5 Report Structure

The remaining of the report is structured as follows. In chapter 2, the theory of

quantum information and attacks on QKD is introduced. In chapter 3, the research

methodology is described. In chapter 4, the implementation and result are presented. In

chapter 5, the results, evaluation, and implication of this research are discussed. In

chapter 6, this research is concluded.

4

2 Literature Review

This section introduces the theory of quantum information and the attacks on BB84

QKD.

2.1 Theory of Quantum Computing

In this section, the author will give a basic introduction to the theory of quantum

computing that is necessary to understand attacks against QKD.

2.1.1 History of Quantum Computing

Paul Benloff proposed a Turing machine model in quantum mechanics in 1980

(Benioff, 1980). In 1982, Richard Feynman noted that classical computers cannot solve

problems that quantum computers can. He also noted that it is generally not feasible to

represent the output of a quantum computer using a classical device (Feynman, 1981).

The term “Quantum Computer” was officially used for the first time by David Deutsch

in 1985 who suggested that universal quantum computer could be developed by

creating quantum gates that function similarly to binary logic gates. David Deutsch also

generalised computing methods for quantum computers (Deutch, 1984).

During this period, a new subfield of quantum computing called quantum

networking emerged. The first QKD protocol called BB84 was developed by Charles

Bennet and Gilles Brassard in 1984 (Bennet & Brassard, 1984). In 1989, the first

successful quantum exchange was performed. BB84 got wide recognition because of its

security (Bennett & Brassard, 1989).

5

In 1994, Shor’s algorithm was invented by Peter Williston Shor at Bell

Laboratories. It is a quantum algorithm that allows for large integer factorization in

polynomial time. This means that when quantum computer become powerful, they can

break encryptions based on prime number factorization such as RSA (Shor, 1994).

2.1.2 Qubit

Any information can be represented by binary digit. In general, expressed as 0 or 1.

One binary digit is known as a bit. A bit can be represented by anything physical that

has two values. Such as low or high voltage in a classical computer, heads or tails in a

coin or left or right direction that pen points to when it is spun around. Similarly, any

information can be represented by a quantum bit or a qubit (Schumacher, 1995).

However, qubits have additional properties that can be used to solve interesting

problems. For example, a qubit can be in a superposition state which represents both 0

and 1 simultaneously. Qubits can be represented by the polarization of a photon, spin of

electron or nucleus and many others 1

1
.

Dirac Notation

Dirac notation also called bra-ket notation is used to express the state of a single

qubit as a vector on a complex Hilbert space. This notation was established by Paul

Dirac in 1939 (Dirac, 1939).

| | |

1
 https://en.wikipedia.org/wiki/Qubit - Accessed 15

th
 April 2021

https://en.wikipedia.org/wiki/Qubit

6

| | | | (2.1)2

2

Coefficients α and β are probability amplitudes and can be complex numbers. A bra

looks like ⟨ | and a ket looks like | . The coefficients in equation (2.1)

describes the

probability of possible states | and | . For example, the superposition state in Dirac

notation is:

|

√
|

√
| (2.2)

2

Equation (2.2) shows that both | and | have a probability of

√
. This indicates

that | is in a superposition state with | and | having equally weighted

probabilities.

A vector in a Hilbert space can also be used to express a quantum state:

| | | [

] [

] [

] (2.3)3

3

Bloch Sphere

Quantum state can be geometrically represented on a Bloch sphere as a vector

pointing towards the surface. Bloch sphere is named after the physicist Felix Bloch in

1946 (Bloch, 1946).

2
 https://en.wikipedia.org/wiki/Quantum_computing - Accessed 15

th
 April 2021

3
 https://en.wikipedia.org/wiki/Quantum_logic_gate - Accessed 15

th
April 2021

https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Quantum_logic_gate

7

Figure 2.1 Quantum state represented on Bloch sphere 4

4

Equation (2.1) written in Dirac notation can be converted to Bloch sphere

representation by substituting for

 and for

.

|

|

| (2.4)

1

2.1.3 Single Qubit Quantum Gates

Classical computers use gates to manipulate bits. Similarly, quantum computers

have quantum gates to manipulate qubits. Quantum gates that are like Boolean logic

gates are generally called unitary gates as they give unitary transformation of qubits

states.

4
 https://www.researchgate.net/figure/The-Bloch-sphere-provides-a-useful-means-of-visualizing-the-

state-of-a-single-qubit-and_fig1_335028508 - Accessed 15
th

April 2021

https://www.researchgate.net/figure/The-Bloch-sphere-provides-a-useful-means-of-visualizing-the-state-of-a-single-qubit-and_fig1_335028508
https://www.researchgate.net/figure/The-Bloch-sphere-provides-a-useful-means-of-visualizing-the-state-of-a-single-qubit-and_fig1_335028508

8

Pauli-X Gate

X gate is like classical NOT gate. It is the equivalent of rotating Bloch sphere by the

X-axis.

 [

] | ⟨ | | ⟨ | (2.5)
3

Figure 2.2 Pauli-X gate represented in a circuit
3

Therefore, | | and | | . And to see the effect the gate has on qubit:

 | [

] [

] [

] | (2.6)

3

Pauli-Y Gate

Y gate changes the quantum state | to | and | to | . It is the equivalent of

rotating Bloch sphere by the Y-axis.

 [

] | ⟨ | | ⟨ | (2.7)
3

Figure 2.3 Pauli-Y gate represented in a circuit
3

Therefore, | | and | | . And to see the effect the gate has on

qubit:

9

 | [

] [

] [

] (2.8)

3

Pauli-Z Gate

Basis state | is left unchanged by Z gate but changes | to | and | to | .

It is the equivalent of rotating Bloch sphere by the Z-axis.

 [

] | ⟨ | | ⟨ | (2.9)
3

Figure 2.4 Pauli-Z gate represented in a circuit
3

Therefore, | | and | | . And to see the effect the gate has on qubit:

 | [

] [

] [

] (2.10)

3

Hadamard Gate

H gate will map | to
| |

√
 and | to

| |

√
 which indicates that the qubit is in

superposition state with | and | having equally weighted probabilities.

√
[

]
(2.11)

3

Figure 2.5 Hadamard gate represented in a circuit
3

10

Therefore,

√
(| |) | and

√
(| |) | . And to see the effect

the gate has on qubit:

 |

√
[

] [

]

√
[

]

(2.12)
3

 |

√
[

] [

]

√
[

] (2.13)

3

2.1.4 Controlled Gates

Controlled gates manipulate more than one qubit. If gate [

] is a

general gate that performs on a single qubit, then basis states will be mapped as follows:

Table 2.1 Shows what basis states will map to by controlled-U gate
3

| |

| |

| | | | ()| ()|

| | | | ()| ()|

 () [

] (2.14)
3

Equation (2.14) shows the controlled-U gate in matrix representation. Some of the

controlled gates that are used are controlled-X gate (or CX), controlled-Y gate (or CY)

and controlled-Z gate (or CZ). For example, CX gate in matrix representation would be:

11

 [

] (2.15)
3

Figure 2.6 CX gate represented in a circuit
3

2.1.5 Measurement

Measurement or observation is non-reversible, so it is not a gate. Observing a qubit

will collapse or change its state to be a single classical value like | or | instead of a

superposition state. Why, how, or even if the measurement collapses the qubit state to

be | or | is known as the measurement problem. One example of the measurement

problems is Schrodinger’s cat (Schrödinger, 1935). There are no definitive answers yet

but there are some interpretations.

Figure 2.7 Measurement represented in a circuit
3

For example, | | [

] implies that | | is a probability of a qubit state

being in | and | | is a probability of a qubit state being in | . If a number

√
 is

12

plugged into coefficients and , the equation becomes

√
 |

√
 | [

√

√

]. This

means that the probability has equal weight for the Z basis. Measuring the state on a Z

basis will give or to the observer with a 50% chance. If X basis is used instead

for measurement, then it will always give .

2.1.6 Entanglement

More than one qubit is in an entangled state when they interact or share spatial

proximity in a uniform way that each qubit state cannot be independent of the state of

other qubits. This means that measuring the state of one qubit in entangled pair will

result in another qubit collapsing as well regardless of the physical distance between

them (Bancal, et al., 2012).

Bell States

One common example of an entangled state is the Bell pair or EPR pair (Einstein-

Podolsky-Rosen pair) (Einstein, et al., 1935). The simplest way to create an entangled

Bell state is to use the CNOT gate and H gate as follows:

Figure 2.8 Circuit to create Bell state 5

5

5
 https://en.wikipedia.org/wiki/Bell_state - Accessed 15

th
April 2021

https://en.wikipedia.org/wiki/Bell_state

13

The circuit shown above will take two input qubits | and transform it to one of

the Bell states (equation (2.16)). Explicitly, the first qubit will transform to

superposition state
(| |)|

√
. This will act as an input to the CNOT gate. When the first

qubit is | , only the second qubits will be inverted. The output of the CNOT gate

would be
(| |)

√
 | .

The following shows the four entangled states that can be used as basis sets. Also

known as Bell states.

|

√
(| |) (2.16)

5

|

√
(| |) (2.17)

5

|

√
(| |) (2.18)

5

|

√
(| |) (2.19)

5

2.1.7 Quantum Networking

A Quantum network is like a classical network but is useful for certain kinds of

problems. For example, qubits can be sent through the quantum network so quantum

computers can solve certain problems faster by connecting several quantum computers

(quantum computing cluster) (Tabia, 2011). Another example could be security.

Quantum network can be more secure because QKD allows the detection of

eavesdropper and theoretically unbreakable cryptography that can be used to encrypt

communication (Tomamichel & Leverrier, 2017) and (Portmann & Renner, 2014).

14

Quantum Superdense Coding

Superdense coding allows one person to send two classical bits to another person by

sending only one qubit if each person has a qubit pre-shared in an entangled state

(Nielsen & Chuang, 2010).

The protocol involves five steps6

6
:

1. Preparation

2. Sharing

3. Encoding

4. Sending

5. Decoding

Preparation requires that two qubits be in one of Bell states. Such as |

√
(| |). After preparation, one qubit needs to be sent to Alice (qubit B)

and another qubit to Bob (qubit A). If Alice wants to send Bob two classical bits, then

she needs to encode her local qubit by applying a quantum gate. This will alter the

entangled state | into one of the four Bell states.

 | |

√
(| |) (2.20)

6

 | |

√
(| |) (2.21)

6

 | |

√
(| |) (2.22)

6

6
 https://en.wikipedia.org/wiki/Superdense_coding - Accessed 15

th
April 2021

https://en.wikipedia.org/wiki/Superdense_coding

15

 | |

√
(| |) (2.23)

6

Now, Alice just needs to send her qubit to Bob. Bob will decode the qubit B by

applying CNOT unitary operation with qubit A as a control qubit and qubit B as a target

qubit. Then he will perform unitary operation on qubit A. This means the H gate

is only applied to qubit A.

For example, if Alice got state after encoding her qubit, when Bob applies

CNOT gate with qubit A as control bit and B as target then will transform to

√
(| |) (2.24)

6

Now, when the H gate is only applied to qubit A:

√
(

√
(| |)

√
(| |))

|

|

|

| |

(2.25)
6

Now that Bob has basis state | , Bob knows that Alice wanted to send classical

bits 01.

Figure 2.9 Circuit representation of superdense coding
6

16

Quantum Teleportation

It is possible to use gate operation to send quantum information between short

distances and long distances. It can be thought of as the opposite of superdense coding.

Superdense coding sends two classical bits using one qubit, but teleportation sends one

qubit using two classical bits (Bennet, et al., 1993). The requirement of sending two

classical bits forbids the transmission of information faster than light.

The protocol involves five steps7

7
:

1. Preparation

2. Sharing

3. Encoding

4. Sending

5. Decoding

Step 1 and 2 is the same as superdense coding. If Alice has q1 of Bell pair and Bob

has q2 of Bell pair. And if Alice wants to send a qubit (|) to Bob, then she needs to

apply a CNOT gate to q1 controlled by | . Then she applies H gate to | . Next, she

will measure both qubit q1 and | which the result will be stored as two classical bits.

Now, Alice will perform step 4 and send the classical bits to Bob through classical

communication. After Bob has received two classical bits, he will apply quantum gates

on his qubit (q2) depending on the classical bits as follows:

Table 2.2 Shows which quantum gate to use based on classical bits.

 7

 7

7
 https://en.wikipedia.org/wiki/Quantum_teleportation - Accessed 15

th
April 2021

https://en.wikipedia.org/wiki/Quantum_teleportation

17

 7

 7

After applying quantum gates, Bob will have the qubit that Alice has sent.

Figure 2.10 Circuit representation of quantum teleportation 8

8

2.2 Attacks on BB84 QKD

In this section, the author will introduce both theoretical attacks and experimentally

verified attacks.

2.2.1 Intercept and Resend

This is the simplest type of attack. When Alice sends qubits to Bob, Eve can

intercept and measure the state 9

9
. Then Eve can send a replacement state to Bob.

However, Eve can be detected by Alice and Bob as Eve must guess which sending basis

Alice used. And Eve will have a 50% chance to guess correctly.

8
 https://qiskit.org/textbook/ch-algorithms/teleportation.html - Accessed 15

th
 April 2021

9
 https://en.wikipedia.org/wiki/Quantum_key_distribution - Accessed 15

th
 April 2021

https://qiskit.org/textbook/ch-algorithms/teleportation.html
https://en.wikipedia.org/wiki/Quantum_key_distribution

18

For example, Alice generates basis +×+× and qubits 0101 to send it to Bob. Then

Bob will generate basis ×++× and measures the bits which will be 1001. When Alice

and Bob compare their measured bits, they should get the same bit for the same basis.

However, if Eve intercepts their communication, Eve will generate a basis ++×+ and

measure the bits before Bob receives the qubits. Eve measures 0011 and when Bob

measures, he will get 1000. So, Alice and Bob know that since both got basis × but the

result was different, there must be an interceptor.

The probability that Eve guesses incorrectly is 50%. And Bob also has a probability

of 50% to guess correctly which means that the probability of an intercepted qubit

generating an error in the key is

. Therefore, if Alice and Bob compare n bits,

the probability of identifying the presence of Eve is

 (

)

(2.26)

9

2.2.2 Man in the Middle Attack

This is like classical networks. If a communication channel is used without

authentication, then someone could be in the middle of communication without anyone

knowing
9
. This is because quantum mechanics cannot distinguish different people with

different intentions just like in a classical network.

2.2.3 Photon Number Splitting Attack

Implementation of quantum computer that send photons use laser pulses to send

quantum states. Each laser pulses contain a small number of photons which is

distributed according to Poisson distribution
9
. This means that there may be no photons,

19

1 photon or 2 photons per pulse. When Alice sends a quantum state using photons, extra

photons can be split off by Eve, stored in a quantum memory, and the remaining will go

to Bob. Eve can later measure the qubits on the correct basis when Alice reveals the

encoding basis.

Even with this attack, the generation of the secure key is possible by having a higher

number of qubits to send which reduces the rate of generation of secure keys

exponentially. The rate of secure key generation is reduced by with the attack. The

rate of secure key generation is reduced by without the attack, where is the

transmittance of the quantum channel.

2.2.4 Denial of Service Attack

By cutting off or blocking the line that connects two nodes could route the

communication elsewhere
9
. Such as another line or classical communication line which

could be used to do further attacks.

2.2.5 Trojan Horse Attack

Eve can send bright light through the quantum channel to probe the system by

analysing the back-reflections
9
. Eve has a higher than 90% probability to discern Bob's

secret basis choice (Jain, et al., 2014).

2.2.6 Random Number Generator Attack

Almost all random number generator attacks require access to the system before

performing the attack whether it is remotely or physically
9
. One example is when the

20

attacker obtains a stream of random bits and uses this to predict the future output. This

could be used to do man in the middle attack on the classical communication channel.

Another example could be modified to the input of a random number generator.

Emptying the entropy and putting it in a known state. This could be used to know the

random encoding basis or random bits that Alice sends to Bob to create a secure key.

2.2.7 Physical Attack

Physical attacks involve gaining access to the victim’s device physically
9
. With this

attack, the attacker can impersonate the victim, get random encoding basis and random

bits, create a backdoor and other things which can compromise the communication

between the victim and another person.

21

3 Methodology

This section focuses on the discussion, data collection, analysis and evaluation of

the methodology used for this research.

3.1 Discussion of Methodology

The aim of this research is to design and simulate attacks against the QKD

algorithm and to create a mitigation plan against such attacks as stated in section 1.3.

To fulfil this aim, the first step is to design attacks whether they are existing or new.

Then the effectiveness of each attack will be measured by using various criteria. The

collected data will then be analysed to ensure that they are correct by confirming with

their respective formula. Lastly, each attack will be put into categories. The steps will

be repeated with and without a mitigation plan.

Overall, the methodology follows the waterfall model as shown in Figure 3.1. The

reason the waterfall model (Royce, 1970) was chosen is that there are no changing

requirements that need to be accounted for in this research.

22

Figure 3.1 Showing the waterfall model of this research methodology.

3.2 Data collection strategy

This section explains the process up to the collection of measurement. Primary data

will be collected from experiments where possible and secondary data will be collected

for the rest. However, some attacks may not have secondary data. In this case, the

author will provide a reasonable guess based on arguments that will be stated.

3.2.1 Proposed Design

The attacks will be designed in form of the equation, quantum circuit diagram then

the code for simulation.

Equation

By designing the attacks in form of an equation, it is easier to verify if the attacks or

measurement are correct. Equations also help with seeing patterns which can help with

23

relationships or correlation between different numbers. As an example, equation (3.1)

shows the probability of Bob guessing the basis correctly. This will be the probability

without the attack. When Eve tries to intercept the communication, Eve will have a 50%

chance of guessing the basis incorrectly as shown in equation (3.2). In order to get the

probability of a qubit generating an error in secure key, both equation (3.1) and (3.2) are

combined as shown in equation (3.3). Therefore, the probability of identifying the

presence of Eve per qubit is

 as shown in equation (3.4). Finally, if Alice and Bob

compare n bits then the probability of detecting the presence of Eve is shown in

equation (3.5).

 (3.1)

 (3.2)

 (

) (

)

(3.3)

 (3.4)

 (

)

 (3.5)

Quantum Circuit Diagram

After the equation, a quantum circuit diagram will be created based on the equation

and descriptions of the attack. This will help to see how the qubits will move and with

creating the code for simulation. A Quantum circuit diagram will also show where or

when the measurement is being made which will be helpful. For example, the quantum

circuit diagram for intercept and resend attack is shown below.

24

Figure 3.2 Circuit representation of simulation of BB84 protocol without

interception 10

10

Figure 3.3 Circuit representation of simulation of BB84 protocol with

interception
10

The attacks will be designed with a quantum circuit diagram without interception

then with an interception as shown in Figure 3.2 and Figure 3.3.

Code

Then, the code will be implemented based mostly on a quantum circuit diagram

while verifying with the equation that the code does what it is supposed to do. Since the

code must be accurate, portable, and measurable the code itself will follow the waterfall

model to make sure that the code meets the requirements.

10

 https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html - Accessed 15
th

April 2021

https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html

25

Figure 3.4 Waterfall model for creating code.

Since, the code will be based on the description, equation and quantum circuit

diagram, the requirement analysis has mostly been done. The second step is to design

the code, and this will involve creating multiple UML diagrams to ensure that code is

portable, accurate and performant. Then the code will be implemented based on the

UML diagrams. The code will then be run multiple times with different cases to ensure

that it is working as intended. The final stage in the waterfall model is to maintain the

code and to fix any issues that may arise.

26

Figure 3.5 Class diagram for simulation both with and without interception

27

Figure 3.6 Activity diagram for simulation without interception

28

Only class diagram and activity diagram are produced because the other UML

diagrams are not necessary for this research. Class diagram and activity diagram

provides most of the necessary information and quantum circuit diagram acts similarly

to use case diagram and sequence diagram for this research.

Sources of Code

The final code will be produced using many sources such as the internet and other

research papers as too much time could be devoted to the development of the code that

may be freely available on the internet. However, most sources except the Qiskit

website have outdated code that does not work anymore. This implies that the code

produced from this research will be partly from Qiskit website 11

11
 which will be

referenced in the code.

3.2.2 Measurement

The Quantum circuit diagram will have a measurement icon (see Figure 3.2 and

Figure 3.3) that shows when the measurement is being made. The code will show the

output of these measurements to confirm if the attack has been successful or not. The

code will contain extra measurements that will be made internally which will be used to

determine that code is correct and how the attack performs. Examples of internal

measurements are the basis, bits and other numbers used to generate basis and bits.

11

 https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html - Accessed 21
st

 April 2021

https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html

29

3.3 Analysis of Collected Data

This section explains the analysis method of collected data.

3.3.1 Confirmation with Equation

The first step is to confirm the collected data against the equation which is known to

be correct. This will ensure that the data is sufficiently accurate. The same input that is

used in the code will be given to the equation and the equation should output the same

result as the code.

3.3.2 Proposed Categorization Method

After the data is found to be correct, it will get put into three groups that are ordered

from easiest to hardest attacks, highest to lowest success rate and success rate of attacks

from easiest to hardest attacks.

Table 3.1 Example table for organising the attacks from easiest to hardest.

Rank Name of Attack Points

1

2

3

4

5

6

30

Figure 3.7 Example graph for organising attacks from highest to lowest success

rate.

Figure 3.8 Example graph for organising attacks from easiest to hardest

attacks with success rate.

31

These three categories were chosen because they are simple and easy to see the

variations in data. For example, even if an attack is easy, it might not be of concern

because of its low success rate. However, if there are attacks that have a very high

success rate with moderate difficulty can have significant consequences.

Criteria of Difficulty of Attacks

The following are the criteria that will be used to determine if an attack is easy or

hard.

 Proximity

 Privilege

 knowledge

Proximity is the distance that is required to conduct an attack. An attack could be

fully remote, partly remote (for example, outside the house or in a local area network

only) or physical access to the device required. It will be measured on a scale from 0 to

10.

Privilege is the level of control that the attacker gets. The attacker could get

metadata, access to the browser or full access to the device. It will be measured on a

scale from 0 to 10.

Knowledge is the knowledge required to conduct an attack. In case of attacks

involving quantum computers, an attacker may need to know some quantum mechanics

and mathematics in addition to computer science. Certain attacks such as denial of

service attack are easier than interception, man in the middle attacks or photon number

32

splitting attack because the former requires less knowledge compared to the latter

attacks. It will be measured on a scale from 0 to 10.

Criteria of Success Rate of Attacks

Success rate or percentage will be determined purely by empirical observation of

simulation of the attacks for those that can be simulated. Both with and without the

mitigation plan. For those that cannot be simulated, the author will provide a reasonable

guess based on arguments that will be stated.

3.4 Tools Used

In this section, the author will introduce tools that are used in this research.

3.4.1 Python

Python is a general-purpose high level interpreted language. Python’s design

philosophy is code readability and requires that the code be indented properly12

12
, or the

program will not run. This programming language was chosen because of its ease of use

and extensive support for many libraries, frameworks and modules that can be used to

analyse data and create diagrams. In this research, Python version 3.8 is used.

3.4.2 Qiskit

Qiskit is an SDK that has all the tools that are needed to create a quantum circuit,

run attack simulations, analyse data, and create diagrams. Qiskit allows working with

12

 https://en.wikipedia.org/wiki/Python_(programming_language) – Accessed 20
th

 April 2021

https://en.wikipedia.org/wiki/Python_(programming_language)

33

pulses, circuits, and application modules on a real quantum computer with both trapped

ion architecture and superconducting architecture. In this research, Qiskit version 0.25.0

is used. The specific versions are as follows:

 Qiskit-terra – 0.17.0

 Qiskit-aer – 0.8.0

 Qiskit-ignis – 0.6.0

 Qiskit-ibmq-provider – 0.12.2

 Qiskit-aqua – 0.9.0

3.4.3 IBM Quantum Lab

IBM Quantum Lab is a cloud programming environment that allows the building of

quantum applications and experiments. Without any installation, scripts that combine

Qiskit code, equations, visualizations, and narrative text can be created in a Jupyter

Notebook environment 13

13
. The Notebook can then be run on a real quantum computer or

a quantum computer simulator. The Notebook can be stored, accessed, and managed

from IBM Quantum Lab. It requires an account that is free to sign up. Qasm simulator

is used to run the simulation. It is not a real quantum computer and does not have qubit

errors.

3.4.4 Miscellaneous

To create UML diagrams and graphs, a website called draw.io has been used.

13

 https://quantum-computing.ibm.com/lab/docs/iql/ - Accessed 20
th

 April 2021

https://quantum-computing.ibm.com/lab/docs/iql/

34

3.5 Evaluation of Methodology

The waterfall approach is the most effective because there are no changing

requirements. It is simple and ensures that all the process are followed exactly to be

correct and accurate. It also covers everything that is required from start to finish which

acts as a guide. This makes the development and experiments faster with accurate data.

35

4 Implementation and Results

This section introduces the testing of code, results of the experiment and result of

the categorization.

4.1 Testing

Testing will be done with measurements of simulation and equation. Both with and

without an interception. The seed for the pseudo-random number generator will be set

to 5 for reproducibility. The test is also done without the seed being set at runtime.

However, this produces different output every run so is not recorded in the tables

below.

36

4.1.1 Testing without Interception

Table 4.1 Testing table for simulation of attack without an interception.

Test No. Description Measurements Confirm mathematically
Passed

Test

1

Alice

generates a

random basis.

See Figure 4.2

labelled “Alice

basis”.

Since there is a 50% chance

of getting 0 or 1, the basis

will have almost 50% 0s and

almost 50% 1s. See Figure

4.2.

Yes

2

Bob generates

a random

basis.

See Figure 4.3

labelled “Bob

basis”.

Since there is a 50% chance

of getting 0 or 1, the basis

will have almost 50% 0s and

almost 50% 1s. See Figure

4.3.

Yes

3

Alice

generates a

random

message.

See Figure 4.2

labelled “Alice

random

message”.

Since there is a 50% chance

of getting 0 or 1, the

message will have almost

50% 0s and almost 50% 1s.

See Figure 4.2.

Yes

4

Bob measures

the message

from Alice

based on

Bob's basis.

See Figure 4.3

labelled

“Result of Bob

measurement”.

Since there is a 50% chance

of getting 0 or 1, the

measured bits will have

almost 50% 0s and almost

50% 1s. See Figure 4.3.

Yes

5

Alice and Bob

generate good

bits.

See Figure 4.4

labelled “Alice

good bits” and

“Bob good

bits”.

Since there is a 50% chance

of getting 0 or 1, the good

bits will have almost 50% of

the total number of message

bits. See Figure 4.4.

Yes

6

Alice and Bob

choose

random bits

for key bits

selection.

See Figure 4.5

labelled “Alice

selection” and

“Bob

selection”.

Not applicable Yes

7

Alice and Bob

get sample

bits.

See Figure 4.5

labelled “Bob

sample” and

“Alice

sample”.

Not applicable Yes

37

Figure 4.1 States of the qubit cannot be shown because of error. It is possible to

fix the error however, it is outside the scope of this research.

Figure 4.2 Showing the internal measurements made for sending a message.

Figure 4.3 Showing the internal measurements made for measuring message.

Figure 4.4 Showing the internal measurements made for checking good bits.

Figure 4.5 Showing the internal measurements made for selecting sample bits.

38

4.1.2 Testing with Interception

Table 4.2 Testing table for simulation of attack with an interception.

Test No. Description Measurements Confirm mathematically
Passed

Test

1

Alice

generates a

random basis.

See Figure 4.2

labelled “Alice

basis”.

Since there is a 50% chance

of getting 0 or 1, the basis

will have almost 50% 0s and

almost 50% 1s. See Figure

4.2.

Yes

2

Bob generates

a random

basis.

See Figure 4.3

labelled “Bob

basis”.

Since there is a 50% chance

of getting 0 or 1, the basis

will have almost 50% 0s and

almost 50% 1s. See Figure

4.3.

Yes

3

Eve generates

a random

basis.

See Figure 4.6

labelled “Eve

basis”.

Since there is a 50% chance

of getting 0 or 1, the basis

will have almost 50% 0s and

almost 50% 1s. See Figure

4.6.

Yes

4

Alice

generates a

random

message.

See Figure 4.2

labelled “Alice

random

message”.

Since there is a 50% chance

of getting 0 or 1, the

message will have almost

50% 0s and almost 50% 1s.

See Figure 4.2.

Yes

5

Eve measures

the message

from Alice

based on

Eve's basis.

See Figure 4.6

labelled

“Result of Eve

measurement”.

Since there is a 50% chance

of getting 0 or 1, the

measured bits will have

almost 50% 0s and almost

50% 1s. See Figure 4.6

Yes

6

Bob measures

the message

from Alice

based on

Bob's basis.

However, Eve

has already

measured so

Bob should

get a different

outcome.

See Figure 4.7

labelled

“Result of Bob

measurement”.

Since there is a 25% chance

of getting 0 or 1 because of

interception, the measured

bits will have almost 25%

correct compared to Alice.

See Figure 4.7. Yes

7

Alice and Bob

generate good

bits.

See Figure 4.4

labelled “Alice

good bits” and

“Bob good

bits”.

Since there is a 50% chance

of getting 0 or 1, the good

bits will have almost 50% of

the total number of message

bits. However, the error rate

Yes

39

should be almost 50%. See

Figure 4.4.

8

Alice and Bob

choose

random bits

for key bits

selection.

See Figure 4.5

labelled “Alice

selection” and

“Bob

selection”.

Not applicable Yes

9

Alice and Bob

get sample

bits.

See Figure 4.5

labelled “Bob

sample” and

“Alice

sample”.

Not applicable Yes

Figure 4.6 Showing the internal measurements made for Eve.

Figure 4.7 Showing the internal measurements made for Bob during the

intercept attack.

Figure 4.8 Showing the internal measurements made for selecting sample bits

with an interception.

40

4.2 Results

In this section, the result of the experiment will be introduced then the result of the

categorization of various attacks.

4.2.1 Result of the Experiment

Without Interception

First, simulation without an interception is shown.

Figure 4.9 Showing that without an interception, there is no interception.

Figure 4.9 shows that there are no interceptions because Eve is not intercepting. If

Eve were to intercept, then the interception bar would not be 0.

41

With Interception

Secondly, simulation with interception is shown below.

Figure 4.10 Probability of detecting Eve for one qubit.

The result is like equation (3.5). However, it is not exactly like equation (3.5). The

probability of Eve going undetected is around 100% for one qubit. Whereas equation

(3.5) shows that the probability should be 75% for one qubit. See Figure 4.10.

42

Figure 4.11 Probability of detecting Eve for two qubits.

Figure 4.12 Probability of detecting Eve for three qubits.

43

Figure 4.13 Probability of detecting Eve for four qubits.

Figure 4.14 Probability of detecting Eve for five qubits.

44

However, the probability of Eve being undetected goes down exponentially

correlated with the number of qubits see Figure 4.11 to Figure 4.14. This is the same as

what the equation has predicted.

Since the intercept and resend attack relies on guessing and measuring qubits based

on a basis, this attack cannot be tested without a mitigation plan. This is due to how

quantum mechanics work and QKD will automatically mitigate against these types of

attacks. QKD is the mitigation plan against these types of attacks. However, attacks that

require a mitigation plan will be introduced in the next section.

4.2.2 Result of the Categorization

First, tables or graphs will be shown. This will be the result of this research. Then

explanation will be provided for each attack and their rank in tables or graphs.

Attacks from Easiest to Hardest

Table 4.3 Attacks ranked from easiest to hardest.

Rank Name of Attack Points

1 Denial of Service 20

2 Intercept and Resend 20

3 Man in the Middle 19

4 Trojan Horse 16

5 Photon Number Splitting 15

45

6 Random Number Generator 15

7 Physical 12

Intercept and Resend Attack

 Proximity – 10 points were given because it can be fully remote.

 Privilege – 3 points were given because this attack does not give lots of access

to the victim's computer. Only the reading of data can be done.

 Knowledge – 7 points were given because it does not require in-depth

knowledge to do this attack.

The total is 20 points.

Man in the Middle Attack

 Proximity – 10 points were given because it can be fully remote.

 Privilege – 4 points were given because this attack does not give lots of access

to the victim's computer. However, manipulation of a victim may provide more

privilege.

 Knowledge – 5 points were given because it requires some in-depth knowledge

to do this attack. Such as psychology to manipulate victims. Or knowledge to

send convincing data.

The total is 19 points.

46

Photon Number Splitting Attack

 Proximity – 7 points were given because it can be mostly remote. Further

research is needed however since the attack needs to be directly connected to the

victim, this attack may not be doable over the internet.

 Privilege – 4 points were given because this attack does not give lots of access

to the victim's computer. Only the reading of data can be done. However, it does

not reveal the attacker’s presence to the victims.

 Knowledge – 4 points were given because it requires some in-depth knowledge

to do this attack. Such as the probability of two photons being emitted which

depends on the hardware.

Total is 15 points.

Denial of Service

 Proximity – 10 points were given because it can be fully remote.

 Privilege – 2 points were given because this attack does not give any access to

the victim's computer by itself.

 Knowledge – 8 points were given because it does not require any in-depth

knowledge to do this attack.

The total is 20 points.

47

Trojan Horse

 Proximity – 5 points were given because it can be somewhat remote. This attack

requires that the attacker be in a local area network or have a direct connection.

 Privilege – 8 points were given because this attack gives lots of access to the

victim's computer. Since the attacker can read data directly from the victim's

machine, there could be other valuable data that can be obtained. There is a

possibility to modify the state of the victim's machine which would provide the

attacker with a lot of privilege.

 Knowledge – 3 points were given because it requires in-depth knowledge to do

this attack for now.

The total is 16 points.

Random Number Generator

 Proximity – 5 points were given because it can be mostly remote. However,

doing this attack remotely requires that the attacker have access to the victim’s

machine. Or the attacker needs to have physical access to the machine.

 Privilege – 3 points were given because this attack does not give lots of access

to the victim's computer by itself. However, this can be used in combination

with other attacks to have almost total control over the victim's machine. For

example, have the victim generate a password with a known initial random

number generator state.

 Knowledge – 7 points were given because it requires in-depth knowledge to do

this attack.

48

Total is 15 points.

Physical

 Proximity – 1 point was given because an attacker needs physical access.

 Privilege – 10 points were given because this attack gives lots of access to the

victim's computer. There can be many things that an attacker can do.

 Knowledge – 1 point was given because it requires in-depth knowledge to do

this attack. For example, knowledge of physical security, location, knowledge

about the victim etc.

The total is 12 points.

Attacks from Highest to Lowest Success Rate without Mitigation

Figure 4.15 Attacks ranked from highest to lowest success rate without

mitigation plan.

49

Man in the middle attack has a 100% success rate plan because if Alice did not

authenticate and did not know that Bob is who he is claiming to be then Alice will not

know that someone is in the middle.

Denial of service attack has a 100% success rate because there is no way to know if

traffic is legitimate or not. This means that anyone can ping the machine and if the

machine is pinged too frequently with a large size, then the machine will start to slow

down and unable to serve legitimate requests.

Trojan horse attack has a 90% success rate because according to a group of

researchers, they have managed to do the experiments and found out that this attack has

a 90% success rate (Jain, et al., 2014).

Intercept and resend attack have about a 50% success rate for two qubits. See

Figure 4.10.

As for photon number splitting, random number generator and physical attacks, they

all depend on the implementation and the person doing the attack. For example, for

photon number splitting, laser pulses may send 3 or 4 photons per pulse which will raise

the success rate of this attack significantly. Whereas laser pulses that send 2 photons

occasionally will have a very low success rate. Similarly, a random number generator

attack's success rate could be zero if the victim is using a true quantum random number

generator.

50

Attacks from Highest to Lowest Success Rate with Mitigation

Figure 4.16 Attacks ranked from highest to lowest success rate with a mitigation

plan.

Intercept and resend attack are mitigated by default so there is no change in the

success rate. However, increasing the number of bits used for comparison will reduce

the probability of Eve going undetected exponentially.

Denial of service attack drops to 5% because, with a decent configuration of the

machine, the amount of ping and size of data can be reduced. For example, if an

attacker tries to send a thousand pings per second, they could be rate-limited and

banned for a short time.

Trojan horse drops to 0% because with a classical light detector to check for

illegitimate light or another hardware that acts similarly to a firewall, this attack can be

detected and mitigated 100% of the time.

51

Man in the middle attack drops to 0% because, with proper authentication and

identification, this attack can be detected 100% of the time. For example, Alice and Bob

could create a pre-shared key in-person to be used as an authentication method.

Photon number splitting attack drops to 0% because using a true single-photon

source will render this attack useless (Intallura, et al., 2007).

Random number generator attack drops to 0% because using a quantum random

number generator will make any kind of attacks useless (Herrero-Collantes & Garcia-

Escartin, 2017).

As for physical attacks, there are too many factors to consider so it depends on the

situation.

Attacks from Easiest to Hardest with Success Rate without Mitigation

Figure 4.17 Attacks ranked from easiest to hardest with success rate without

mitigation plan.

52

Figure 4.17 shows that some attacks that are easy does not necessarily have high

success rate.

Attacks from Easiest to Hardest with Success Rate with Mitigation

Figure 4.18 Attacks ranked from easiest to hardest with success rate with a

mitigation plan.

Figure 4.17 and Figure 4.18 shows the attacks from easiest to hard with their

success rate. This can be interpreted in various ways which will be discussed in section

5.

53

5 Discussion

In this section, interpretation of results, evaluation of approach and implications of

this research will be discussed.

5.1 Interpretation of Results

5.1.1 Interpreting Experiment

The result of the experiment in section 4.2.1 shows that it is like what the equation

(3.5) predicts but it does not follow the exact pattern as is the case with the real world.

For a lower number of qubits transmitted, there is a possibility that Eve can have a

higher than 75% success rate at intercepting the communication. This can be a

significant threat to those that have security requirements. The closes thing to the

mitigation plan is to generate more than 72 random qubits to transmit. This is because

according to the equation, with 72 qubits, the probability of detecting Eve is about

0.9999999989897916. However, assuming those who need this kind of security will

also use a quantum random number generator to generate random qubits, the rate of

entropy it produces might be too slow to be practical.

The result has been generated by running the code 100 times, counting the number

of times Eve was detected and by plotting them as a histogram. However, the code has

not been audited or formally reviewed, which means that there could be some

inconsistencies that produce slightly different result compared to the equation. Or the

simulator that was used has some biases which may explain the difference. In this case,

this could be argued that in the real world, the probability of detection of Eve could be

54

99% or 1% for one qubit. This could make the interception and resend the most

dangerous or the least dangerous attack. Further research is needed to confirm.

5.1.2 Interpreting Easiest to Hardest Attacks

The result of categorization can be used in many ways. For example, the Table 4.3

shows the attacks that are easiest to hardest to do. This can be interpreted as the attacks

that are most likely to occur once the quantum internet is realised. This is because most

people will not have the necessary knowledge to conduct advanced attack as is the case

with the classical internet. Also, attackers will want to automate as much as possible.

This implies that attackers will build bots that will randomly attack whatever the bots

find. And since the bots cannot do too advanced attacks, the bots will do the easiest

attacks as they will be sure to find devices with the improper configuration that can be

attacked using an easy method.

5.1.3 Interpreting Highest to Lowest Success Rate without Mitigation

The Figure 4.15 shows the success rate of attacks from highest to lowest. This can

be used to know which attacks have the most severity once the attacker succeeds. For

example, without any mitigation plan, the man in the middle attack will have a 100%

success rate. This means that attackers can compromise the communication channel

100% of the time. This must be mitigated because if it is not mitigated then any secure

communication in quantum internet is susceptible to compromise. For example,

communication between banks, governments, or some other sensitive data. Another

example could be a denial of service which can be used to disrupt a communication

entirely or to route the communication to another channel where there is a higher

55

chance of compromise. This can be a very problematic attack without a mitigation plan

as seen in the early days of the internet.

5.1.4 Interpreting Highest to Lowest Success Rate with Mitigation

The Figure 4.16 shows that after mitigation, most of the attacks have a 0% or almost

0% success rate. This is because most of the attacks can be detected and entirely

blocked. The intercept and resend attack became first while the denial of service

remained second. However, the only real threat after mitigation is intercept and resend

attack. As discussed previously, the only real problem to rendering this attack useless is

to have a quantum random number generator that can generate random numbers at a

higher rate than the number of random qubits sent. The figure shows that for QKD to

become more widely used, mitigation plans must be used to make QKD safer.

The exception is the physical attack. Physical attacks have too many factors to

accurately get a success rate.

Summary of mitigation plans are as follows:

 Intercept and Resend – Use a higher number of random qubits to send.

 Denial of Service – Use a rate blocking software or device.

 Man in the Middle – Proper identification and authentication.

 Trojan Horse – Use an illegitimate signal detecting device. Or some kind of

firewall.

 Photon Number Splitting – Use a true single-photon source.

 Random Number Generator – Use a quantum random number generator.

56

5.2 Evaluation of Approach

Overall, the waterfall model approach to this research has been successful. The

requirements were set at the beginning and then according to requirements, the research

was designed, implemented, and verified step by step. Any other approach would have

been counterproductive as many steps would be repeated without any change.

By gathering both primary and secondary data, this research was able to produce a

mitigation plan against many attacks. This research also identified a problem for future

research. Such as the real-world data of intercept and resend attack. Another problem is

the unavailability of a real quantum computer. Attacks such as photon number splitting,

denial of service and trojan horse attack all require at least two quantum computers to

experiment. This leads to the limitations of this research. Only one attack could be

simulated whereas, for other attacks, the categorization relied on secondary data or by

speculation. Another limitation of this research is time. To get more accurate data, the

simulation needs to be run many times. However, each run takes a long time so the data

may not be as accurate as possible.

The future plan is to review the code and to run it more than 100 times to get more

accurate data and to find out if the real-world data correlates with equation (3.5). If

possible, access to at least two quantum computers would be desirable to experiment

with other attacks also and get real-world data. Then the categorization will be redone

based on new data.

5.3 Implication of this Research

This research has identified six mitigation plans against attacks on QKD. It also

identified one problem that needs to be researched further. The result of categorization

57

also predicts the most frequent attacks against QKD and the severity of each attack with

and without a mitigation plan.

European Telecommunications Standards Institute (ETSI) is working on the

standardization of attacks on QKD 14

14
. And they are collecting and evaluating QKD

security proofs based on International Organisation for Standardization (ISO) security

evaluation standards. This research will help ETSI by providing them with an example

of real-world data with a mitigation plan for attacks which can be used to further

develop the standardization of attacks. The data can also be used to create the best

security practices standard for QKD. This research also contains various criteria that

were used to categorize each attack. ETSI can use this data to further develop their

accuracy on standardization of attacks on QKD.

14

 https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/horizon-
results-platform/29227 - Accessed 21

st
 April 2021

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/horizon-results-platform/29227
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/horizon-results-platform/29227

58

6 Conclusion

This research has introduced the basic theory of quantum information which

explained the theory behind seven attacks on BB84 QKD and their mitigation plan. One

of the attacks, intercept and resend, was simulated on a quantum simulator which has

shown to be slightly different to the equation that predicts the probability of undetected

interception occurring. The data from categorization predicts the frequency of each

attack in the future. For example, without mitigation plan, man in the middle, trojan

horse and denial of service attacks are going to be frequently used because of their high

success rate and low knowledge barrier. With the mitigation plan, intercept and resend

and denial of service attacks will be frequently used because there is a chance to

succeed. This implies that a mitigation plan should be put in place when using BB84

QKD and QKD will be much more secure than traditional methods. So, QKD must be

widely adopted when quantum supremacy is realised.

This research has partly achieved the aims which were to design and simulate

attacks against the QKD algorithm and to create a mitigation plan against such attacks.

This is because no new attacks or mitigation plan has been created because of time

constraints. This implies that the scope was too wide and out of reach so it will be

considered appropriately in the future. However, intercept and resend attack has been

simulated which found new data. Existing data have been categorised in novel ways

which shows the effect each mitigation plan has on their respective attacks. And the

categorization demonstrated a pattern that can occur in the future. So, the research has

been partly successful.

59

In the future, simulations will be run many times more to make sure that the data

cannot have biases. For future research, creating new attacks and mitigation plan,

correlation between equation and real-world data can be considered,

IX

References

Anon., 1992. Rapid solution of problems by quantum computation. Royal Society, 439(1907).

Ashokkumar, C., Giri, R. P. & B., M., 2016. Highly Efficient Algorithms for AES Key Retrieval in

Cache Access Attacks. 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp.

261-275.

Bancal, J.-D.et al., 2012. Quantum non-locality based on finite-speed causal influences leads to

superluminal signalling. Nature Physics, 8(12), pp. 867-870.

Bell, J. S., 1964. ON THE EINSTEIN PODOLSKY ROSEN PARADOX*. Physics Publishing Co., 1(3),

pp. 195-200.

Benioff, P., 1980. The computer as a physical system: A microscopic quantum mechanical

Hamiltonian model of computers as represented by Turing machines. Journal of Statistical

Physics, 22(5), pp. 563-591.

Bennet, C. H. & Brassard, G., 1984. Quantum Cryptography, public key distribution and coin

tossing. Bangalore, International conference on computers, systems and signal processing.

Bennet, C. H. et al., 1993. Teleporting an Unknown Quantum State via Dual Classical and

Einstein-Podolsky-Rosen Channels. 70(13).

Bennett, C. H. & Brassard, G., 1989. Experimental quantum cryptography: the dawn of a new

era for quantum cryptography: the experimental prototype is working. ACM SIGACT News,

20(4), p. 78.

Bloch, F., 1946. Nuclear Induction. Phys. Rev, 70(7-8), pp. 460-474.

Chien, C.-H., Meter, R. V. & Kuo, S.-Y., 2015. Fault-Tolerant Operations for Universal Blind

Quantum Computation. ACM Journal on Emerging Technologies in Computing Systems (JETC),

12(1).

Chuang, I., 2000. Quantum Algorithm for Distributed Clock Synchronization. Physical review

letters, Volume 85.

Deutch, D., 1984. Quantum theory, the Church-Turing principle and the universal. Proceedings

of the Royal Society of London, pp. 97-117.

Dirac, P. A. M., 1939. A new notation for quantum mechanics. Cambridge University Press,

35(3), pp. 416-418.

Einstein, A., Podolsky, B. & Rosen, N., 1935. Can Quantum-Mechanical Description of Physical

Reality Be Considered Complete?. 47(777).

Feynman, R. P., 1981. Simulating Physics with Computers. International Journal of Theoretical

Physic, Volume 21.

X

Genkin, D., Shamir, A. & Tromer, E., 2013. RSA Key Extraction via Low-Bandwidth Acoustic

Cryptanalysis .

Hernandez, M. a. L. G. G. et al., 2019. A Quantum-Inspired Method for Three-Dimensional

Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling, 59(10), pp.

4475-4485.

Herrero-Collantes, M. & Garcia-Escartin, J. C., 2017. Quantum random number generators.

Rev. Mod. Phys., 89(1), p. 48.

Intallura, P. M. et al., 2007. Quantum key distribution using a triggered quantum dot source

emitting near 1.3μm. Applied Physics Letters, 91(16).

Jain, N. et al., 2014. Trojan-horse attacks threaten the security of practical quantum

cryptography. arxiv, 16(12), p. 22.

K, I., 2018. qBitcoin: A Peer-to-Peer Quantum Cash System. s.l., Springer, Cham.

Kimble, H. J., 2008. The quantum internet. Nature, 453(7198).

Krco, M. & Paul, P., 2001. Quantum Clock Synchronization: a Multi-Party Protocol. Physical

Review A, Volume 66.

Nielsen, M. A. & Chuang, I. L., 2010. Application: Superdense coding. In: Quantum

Computation and Quantum Information. s.l.:Cambridge University Press, 2010, p. 97.

O'Malley, P. J. J. et al., 2016. Scalable Quantum Simulation of Molecular Energies. Phys. Rev. X,

6(3).

Portmann, C. & Renner, R., 2014. Cryptographic security of quantum key distribution. arxiv.

Royce, W. W., 1970. ANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS, s.l.: s.n.

Schrödinger, E., 1935. Die gegenwärtige Situation in der Quantenmechanik.

Naturwissenschaften, 23(48), pp. 807-812.

Schumacher, B., 1995. Quantum coding. Phys. Rev. A, 51(4), pp. 2738-2747.

Shannon, C. E., 1949. Communication theory of secrecy systems. The Bell System Technical

Journal, 28(4).

Shor, P. W., 1994. Algorithms for quantum computation: discrete logarithms and factoring.

Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124-134.

Tabia, G. N. M., 2011. Quantum Computing with Cluster States. Perimeter Institute for

Theoretical Physics.

Tomamichel, M. & Leverrier, A., 2017. A largely self-contained and complete security proof for

quantum key distribution. Quantum, Volume 1, p. 14.

XI

Appendix I

This section will explain the process to run the code used in this project and the

code will be provided.

Steps to run the code

1. Log in to IBM Quantum Lab using IBMid.

2. Create new file.

3. Copy the code and put them in a specified cell (Marked “Cell “ followed by a

number).

4. Run the code.

Code without interception

Cell 1

QKD Without Interception

Cell 2

imports based on qiskit website code

from qiskit import QuantumCircuit, Aer, assemble

from qiskit.visualization import plot_histogram

from numpy.random import randint

import numpy as np

class Person:

 size = 0

 sample_size = 0

 def __init__(self, size, sample_size):

 self.size = size

 self.sample_size = sample_size

XII

 #np.random.seed(seed=5)

 def sample_bits(self, selection): # method based on qiskit website code

 self.sample = []

 for i in selection:

 i = np.mod(i, len(self.good_bits))

 self.sample.append(self.good_bits.pop(i))

 def generate_bases(self):

 self.bases = randint(2, size=self.size) # code based on qiskit
website code

 def generate_selection(self):

 self.selection = randint(size, size=self.sample_size) # code based on
qiskit website code

 def get_selection(self):

 return self.selection

 def get_bases(self):

 return self.bases

 def get_sample(self):

 return self.sample

 def get_good_bits(self):

 return self.good_bits

Cell 3

class Sender(Person):

 def __init__(self, size, sample_size):

 super().__init__(size, sample_size)

 def encode_message(self): # method based on qiskit website code

 self.message = []

 for i in range(size):

 qc = QuantumCircuit(1,1)

 if self.bases[i] == 0:

 if self.bits[i] == 0:

XIII

 pass

 else:

 qc.x(0)

 else:

 if self.bits[i] == 0:

 qc.h(0)

 else:

 qc.x(0)

 qc.h(0)

 qc.barrier()

 self.message.append(qc)

 def generate_bits(self):

 self.bits = randint(2, size=self.size) # code based on qiskit website
code

 def remove_garbage(self, b_bases): # method based on qiskit website code

 self.good_bits = []

 for q in range(self.size):

 if self.bases[q] == b_bases[q]:

 self.good_bits.append(self.bits[q])

 def get_message(self):

 return self.message

 def get_bits(self):

 return self.bits

Cell 4

class Receiver(Person):

 def __init__(self, size, sample_size):

 super().__init__(size, sample_size)

 def measure_message(self, message): # method based on qiskit website code

 self.measurements = []

 for q in range(self.size):

 if self.bases[q] == 0: # measuring in Z-basis

 message[q].measure(0,0)

XIV

 if self.bases[q] == 1: # measuring in X-basis

 message[q].h(0)

 message[q].measure(0,0)

 qasm_sim = Aer.get_backend('qasm_simulator')

 qobj = assemble(message[q], shots=1, memory=True)

 result = qasm_sim.run(qobj).result()

 self.measured_counts = result.get_counts()

 measured_bit = int(result.get_memory()[0])

 self.measurements.append(measured_bit)

 def remove_garbage(self, b_bases): # method based on qiskit website code

 self.good_bits = []

 for q in range(self.size):

 if self.bases[q] == b_bases[q]:

 self.good_bits.append(self.measurements[q])

 def get_measured_count(self):

 return self.measured_counts

 def get_measured_bits(self):

 return self.measurements

Cell 5

def count_zero_one(count):

 a = 0

 b = 0

 ab = []

 for i in count:

 if i == 0:

 a = a + 1

 if i == 1:

 b = b + 1

 ab.append(a)

 ab.append(b)

 return ab

Cell 6

1. Get internal measurements

XV

Cell 7

size = 100 # message size

sample_size = 15

alice = Sender(size, sample_size)

bob = Receiver(size, sample_size)

alice.generate_bits()

alice.generate_bases()

print("Alice basis: " + str(alice.get_bases()))

ab = count_zero_one(alice.get_bases())

print("Alice number of 0s in basis: " + str(ab[0]))

print("Alice number of 1s in basis: " + str(ab[1]))

alice.encode_message()

print("Alice random message: " + str(alice.get_bits()))

bob.generate_bases()

print("Bob basis: " + str(bob.get_bases()))

ab = count_zero_one(bob.get_bases())

print("Bob number of 0s in basis: " + str(ab[0]))

print("Bob number of 1s in basis: " + str(ab[1]))

bob.measure_message(alice.get_message())

print("Result of Bob measurement: " + str(bob.get_measured_bits()))

ab = count_zero_one(bob.get_measured_bits())

print("Bob number of 0s in result: " + str(ab[0]))

print("Bob number of 1s in result: " + str(ab[1]))

alice.remove_garbage(bob.get_bases())

bob.remove_garbage(alice.get_bases())

print("Alice good bits: " + str(alice.get_good_bits()))

print("Bob good bits: " + str(bob.get_good_bits()))

print("Alice good bits = Bob good bits: " + str(alice.get_good_bits() ==
bob.get_good_bits()))

print("Number of good bits: " + str(len(alice.get_good_bits())))

XVI

alice.generate_selection()

print("Alice selection = " + str(alice.get_selection()))

print("Bob selection = " + str(alice.get_selection()))

alice.sample_bits(alice.get_selection())

print("Alice sample = " + str(alice.get_sample()))

bob.sample_bits(alice.get_selection())

print("Bob sample = " + str(bob.get_sample()))

print("Alice sample = Bob sample: " + str(alice.get_sample() ==
bob.get_sample()))

if alice.get_sample() != bob.get_sample(): # code based on qiskit website
code

 print("Eve's interference was detected.")

else:

 print("No interception")

Cell 8

2. Gather data

Cell 9

def calculate_data(size, sample_size):

 alice = Sender(size, sample_size)

 bob = Receiver(size, sample_size)

 alice.generate_bits()

 alice.generate_bases()

 alice.encode_message()

 bob.generate_bases()

 bob.measure_message(alice.get_message())

 alice.remove_garbage(bob.get_bases())

 bob.remove_garbage(alice.get_bases())

 alice.generate_selection()

 alice.sample_bits(alice.get_selection())

 bob.sample_bits(alice.get_selection())

 if alice.get_sample() != bob.get_sample(): # code based on qiskit website
code

XVII

 return True

 else:

 return False

Cell 10

def collect_data_based_on_runs(sample_size, size, num_runs):

 plot_hist = {'Interception':[], 'No Interception':[]}

 interception_count = 0

 no_interception_count = 0

 for x in range(num_runs):

 if calculate_data(size, sample_size) == True:

 interception_count = interception_count + 1

 elif calculate_data(size, sample_size) == False:

 no_interception_count = no_interception_count + 1

 plot_hist['Interception'].append(interception_count)

 plot_hist['No Interception'].append(no_interception_count)

 display(plot_histogram(plot_hist))

Cell 11

sample_size = 5

size = 100 # message size

num_runs = 100

for x in range(sample_size):

 collect_data_based_on_runs(x, size, num_runs)

Code with interception

Cell 1

QKD With Interception

Cell 2

imports based on qiskit website code

from qiskit import QuantumCircuit, Aer, assemble

from qiskit.visualization import plot_histogram

XVIII

from numpy.random import randint

import numpy as np

class Person:

 size = 0

 sample_size = 0

 def __init__(self, size, sample_size):

 self.size = size

 self.sample_size = sample_size

 #np.random.seed(seed=5)

 def sample_bits(self, selection): # method based on qiskit website code

 self.sample = []

 for i in selection:

 i = np.mod(i, len(self.good_bits))

 self.sample.append(self.good_bits.pop(i))

 def generate_bases(self):

 self.bases = randint(2, size=self.size) # code based on qiskit
website code

 def generate_selection(self):

 self.selection = randint(size, size=self.sample_size) # code based on
qiskit website code

 def get_selection(self):

 return self.selection

 def get_bases(self):

 return self.bases

 def get_sample(self):

 return self.sample

 def get_good_bits(self):

 return self.good_bits

Cell 3

class Sender(Person):

XIX

 def __init__(self, size, sample_size):

 super().__init__(size, sample_size)

 def encode_message(self): # method based on qiskit website code

 self.message = []

 for i in range(size):

 qc = QuantumCircuit(1,1)

 if self.bases[i] == 0:

 if self.bits[i] == 0:

 pass

 else:

 qc.x(0)

 else:

 if self.bits[i] == 0:

 qc.h(0)

 else:

 qc.x(0)

 qc.h(0)

 qc.barrier()

 self.message.append(qc)

 def generate_bits(self):

 self.bits = randint(2, size=self.size) # code based on qiskit website
code

 def remove_garbage(self, b_bases): # method based on qiskit website code

 self.good_bits = []

 for q in range(self.size):

 if self.bases[q] == b_bases[q]:

 self.good_bits.append(self.bits[q])

 def get_message(self):

 return self.message

 def get_bits(self):

 return self.bits

Cell 4

XX

class Receiver(Person):

 def __init__(self, size, sample_size):

 super().__init__(size, sample_size)

 def measure_message(self, message): # method based on qiskit website code

 self.measurements = []

 for q in range(self.size):

 if self.bases[q] == 0: # measuring in Z-basis

 message[q].measure(0,0)

 if self.bases[q] == 1: # measuring in X-basis

 message[q].h(0)

 message[q].measure(0,0)

 qasm_sim = Aer.get_backend('qasm_simulator')

 qobj = assemble(message[q], shots=1, memory=True)

 result = qasm_sim.run(qobj).result()

 self.measured_counts = result.get_counts()

 measured_bit = int(result.get_memory()[0])

 self.measurements.append(measured_bit)

 def remove_garbage(self, b_bases): # method based on qiskit website code

 self.good_bits = []

 for q in range(self.size):

 if self.bases[q] == b_bases[q]:

 self.good_bits.append(self.measurements[q])

 def get_measured_count(self):

 return self.measured_counts

 def get_measured_bits(self):

 return self.measurements

Cell 5

def count_zero_one(count):

 a = 0

 b = 0

 ab = []

 for i in count:

 if i == 0:

XXI

 a = a + 1

 if i == 1:

 b = b + 1

 ab.append(a)

 ab.append(b)

 return ab

Cell 6

1. Get internal measurements

Cell 7

size = 100 # message size

sample_size = 15

alice = Sender(size, sample_size)

eve = Receiver(size, sample_size)

bob = Receiver(size, sample_size)

alice.generate_bits()

alice.generate_bases()

print("Alice basis: " + str(alice.get_bases()))

ab = count_zero_one(alice.get_bases())

print("Alice number of 0s in basis: " + str(ab[0]))

print("Alice number of 1s in basis: " + str(ab[1]))

alice.encode_message()

print("Alice random message: " + str(alice.get_bits()))

eve.generate_bases()

print("Eve basis: " + str(eve.get_bases()))

ab = count_zero_one(eve.get_bases())

print("Eve number of 0s in basis: " + str(ab[0]))

print("Eve number of 1s in basis: " + str(ab[1]))

eve.measure_message(alice.get_message())

print("Result of Eve measurement: " + str(eve.get_measured_bits()))

ab = count_zero_one(eve.get_measured_bits())

print("Eve number of 0s in result: " + str(ab[0]))

print("Eve number of 1s in result: " + str(ab[1]))

XXII

bob.generate_bases()

print("Bob basis: " + str(bob.get_bases()))

ab = count_zero_one(bob.get_bases())

print("Bob number of 0s in basis: " + str(ab[0]))

print("Bob number of 1s in basis: " + str(ab[1]))

bob.measure_message(alice.get_message())

print("Result of Bob measurement: " + str(bob.get_measured_bits()))

ab = count_zero_one(bob.get_measured_bits())

print("Bob number of 0s in result: " + str(ab[0]))

print("Bob number of 1s in result: " + str(ab[1]))

alice.remove_garbage(bob.get_bases())

bob.remove_garbage(alice.get_bases())

print("Alice good bits: " + str(alice.get_good_bits()))

print("Bob good bits: " + str(bob.get_good_bits()))

print("Alice good bits = Bob good bits: " + str(alice.get_good_bits() ==
bob.get_good_bits()))

print("Number of good bits: " + str(len(alice.get_good_bits())))

alice.generate_selection()

print("Alice selection = " + str(alice.get_selection()))

print("Bob selection = " + str(alice.get_selection()))

alice.sample_bits(alice.get_selection())

print("Alice sample = " + str(alice.get_sample()))

bob.sample_bits(alice.get_selection())

print("Bob sample = " + str(bob.get_sample()))

print("Alice sample = Bob sample: " + str(alice.get_sample() ==
bob.get_sample()))

if alice.get_sample() != bob.get_sample():

 print("Eve's interference was detected.")

else:

 print("Eve went undetected!")

Cell 8

2. Gather data

XXIII

Cell 9

def calculate_data(size, sample_size):

 alice = Sender(size, sample_size)

 eve = Receiver(size, sample_size)

 bob = Receiver(size, sample_size)

 alice.generate_bits()

 alice.generate_bases()

 alice.encode_message()

 eve.generate_bases()

 eve.measure_message(alice.get_message())

 bob.generate_bases()

 bob.measure_message(alice.get_message())

 alice.remove_garbage(bob.get_bases())

 bob.remove_garbage(alice.get_bases())

 alice.generate_selection()

 alice.sample_bits(alice.get_selection())

 bob.sample_bits(alice.get_selection())

 if alice.get_sample() != bob.get_sample():

 return True

 else:

 return False

Cell 10

def collect_data_based_on_runs(sample_size, size, num_runs):

 plot_hist = {'Detected':[], 'Undetected':[]}

 detected_count = 0

 undetected_count = 0

 for x in range(num_runs):

 if calculate_data(size, sample_size) == True:

 detected_count = detected_count + 1

 elif calculate_data(size, sample_size) == False:

 undetected_count = undetected_count + 1

XXIV

 plot_hist['Detected'].append(detected_count)

 plot_hist['Undetected'].append(undetected_count)

 display(plot_histogram(plot_hist))

Cell 11

sample_size = 5

size = 100 # message size

num_runs = 100

for x in range(sample_size):

 collect_data_based_on_runs(x, size, num_runs)

